Numerical simulation of nonlinear continuity equations by evolving diffeomorphisms

نویسندگان

  • José A. Carrillo
  • Helene Ranetbauer
  • Marie-Therese Wolfram
چکیده

In this paper we present a numerical scheme for nonlinear continuity equations, which is based on the gradient flow formulation of an energy functional with respect to the quadratic transportation distance. It can be applied to a large class of nonlinear continuity equations, whose dynamics are driven by internal energies, given external potentials and/or interaction energies. The solver is based on an implicit in time stepping and a finite element or finite difference discretization in space. Inherent features include positivity, energy decrease and mesh adaptation in the case of blow up densities or compactly supported solutions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A case study of flood dynamic wave simulation in natural waterways using numerical solution of unsteady flows

Flood routing has many applications in engineering projects and helps designers in understanding the flood flow characteristics in river flows. Floods are taken unsteady flows that vary by time and location. Equations governing unsteady flows in waterways are continuity and momentum equations which in case of one-dimensional flow the Saint-Venant hypothesis is considered. Dynamic wave model as ...

متن کامل

Study of Subcooled Film Boiling on a Horizontal Disc : Part I —

In this work subcooled film boiling on a horizontal disc was studied analytically/ numerically. Linearized stability analysis of a vapor film underlying a pool of heavier liquid was performed in three-dimensional, cylindrical coordinates. From the analysis the dominant wavelength and configuration of vapor releasing nodes was identified. Complete numerical simulation of the nonlinearly evolving...

متن کامل

Numerical Simulation of a Lead-Acid Battery Discharge Process using a Developed Framework on Graphic Processing Units

In the present work, a framework is developed for implementation of finite difference schemes on Graphic Processing Units (GPU). The framework is developed using the CUDA language and C++ template meta-programming techniques. The framework is also applicable for other numerical methods which can be represented similar to finite difference schemes such as finite volume methods on structured grid...

متن کامل

Numerical Investigation of Island Effects on Depth Averaged Fluctuating Flow in the Persian Gulf

In the present paper simulation of tidal currents on three-dimensional geometry of the Persian Gulf is performed by the solution of the depth averaged hydrodynamics equations. The numerical solution was applied on two types of discritized simulation domain (Persian Gulf); with and without major islands. The hydrodynamic model utilized in this work is formed by equations of continuity and motion...

متن کامل

Dhage iteration method for PBVPs of nonlinear first order hybrid integro-differential equations

In this paper, author proves the algorithms for the existence as well as the approximation of solutions to a couple of periodic boundary value problems of nonlinear first order ordinary integro-differential equations using operator theoretic techniques in a partially ordered metric space. The main results rely on the Dhage iteration method embodied in the recent hybrid fixed point theorems of D...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Comput. Physics

دوره 327  شماره 

صفحات  -

تاریخ انتشار 2016